The Magnetic Dipole

Consider a very small, circular current loop of radius a, carrying current I.

Q: What magnetic flux density is produced by this loop, in regions far from the current (i.e., $r \gg$)?

A: First, find the magnetic vector potential $\boldsymbol{A}(\bar{r})$:
$\boldsymbol{A}(\bar{r})=\frac{\mu_{0}}{4 \pi} \oint_{C} \frac{I \overline{d \ell^{\prime}}}{|\bar{r}-\bar{r}|}$

Since the contour C is a circle around the z-axis, with radius a, we use the differential line vector:

$$
\begin{aligned}
\overline{d \ell^{\prime}} & =\rho^{\prime} d \phi^{\prime} \hat{a}_{\phi} \\
& =a d \phi^{\prime} \hat{a}_{\phi} \\
& =\left(a \cos \phi^{\prime} \hat{a}_{x}+a \sin \phi^{\prime} \hat{a}_{y}\right) d \phi^{\prime}
\end{aligned}
$$

The location of the current is specified by position vector \vec{r}. Since for every point on the current loop we find $z^{\prime}=0$ and $\rho^{\prime}=a$, we find:

$$
\begin{aligned}
\vec{r} & =x^{\prime} \hat{a}_{x}+y^{\prime} \hat{a}_{y}+z^{\prime} \hat{a}_{z} \\
& =\rho^{\prime} \cos \phi^{\prime} \hat{a}_{x}+\rho^{\prime} \sin \phi^{\prime} \hat{a}_{y}+z^{\prime} \hat{a}_{z} \\
& =a \cos \phi^{\prime} \hat{a}_{x}+a \sin \phi^{\prime} \hat{a}_{y}
\end{aligned}
$$

And finally,

$$
\begin{aligned}
\bar{r} & =x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z} \\
& =r \sin \theta \cos \phi \hat{a}_{x}+r \sin \theta \sin \phi \hat{a}_{y}+r \cos \theta \hat{a}_{z}
\end{aligned}
$$

With a little algebra and trigonometry, we find also that:

$$
\frac{1}{|\bar{r}-\bar{r}|}=\left[r^{2}-a\left(2 r \sin \theta \cos \left(\phi-\phi^{\prime}\right)\right)+a^{2}\right]^{-1 / 2}
$$

Since the radius of the circle is very small (i.e., $a \ll r$), we can use a Taylor Series to approximate the above expression (see page 231 of text):

$$
\frac{1}{\left|\bar{r}-\vec{r}^{\prime}\right|} \approx \frac{1}{r}+\frac{a \sin \theta \cos \left(\phi-\phi^{\prime}\right)}{r^{2}}
$$

The magnetic vector potential can now be evaluated!

$$
\begin{aligned}
\mathbf{A}(\bar{r}) & =\frac{\mu_{0}}{4 \pi} \oint_{c} \frac{I \overline{d \ell^{\prime}}}{|\bar{r}-\bar{r}|} \\
& =\frac{\mu_{0} I}{4 \pi} \int_{0}^{2 \pi}\left(\frac{1}{r}+\frac{a \sin \theta \cos \left(\phi-\phi^{\prime}\right)}{r^{2}}\right)\left(a \cos \phi^{\prime} \hat{a}_{x}+a \sin \phi^{\prime} \hat{a}_{y}\right) d \phi^{\prime} \\
& =\frac{\pi a^{2} I}{r^{2}} \sin \theta\left(-\sin \phi \hat{a}_{x}+\cos \phi \hat{a}_{y}\right) \\
& =\frac{\pi a^{2} I}{r^{2}} \sin \theta \hat{a}_{\phi}
\end{aligned}
$$

Note that πa^{2} equals the surface area S of the circular loop.
Therefore, we can write that magnetic vector potential produced by a very small current loop is:

$$
\mathbf{A}(\bar{r})=\frac{\mu_{0} S I}{4 \pi r^{2}} \sin \theta \hat{a}_{\phi} \quad(a \ll r)
$$

We can now determine magnetic flux density $B(\bar{r})$ by taking the curl:

$$
\begin{aligned}
\mathbf{B}(\bar{r}) & =\nabla \mathbf{x A}(\bar{r}) \\
& =\frac{\mu_{0} S I}{4 \pi r^{3}}\left(2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right)
\end{aligned}
$$

Q: Hey! Something about this result looks very familiar!

A: Compare this result to that of an electric dipole:

$$
\mathrm{E}(\bar{r})=\frac{Q d}{4 \pi \varepsilon r^{3}}\left(2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}\right)
$$

Both results have exactly the same form!:

$$
c\left(\frac{2 \cos \theta \hat{a}_{r}+\sin \theta \hat{a}_{\theta}}{4 \pi r^{3}}\right)
$$

where c is a constant.

Because of this similarity, we can refer to a small current loop of are S and current I as a Magnetic Dipole.

Note that the only difference between the mathematical description of an electric field produced by an electric dipole and the magnetic flux density produced by a magnetic dipole is a constant c :
electric dipole $\rightarrow c=\frac{\mathrm{Qd}}{\varepsilon}$ magnetic dipole $\rightarrow c=\mu_{0} S I$

Recall that we defined a dipole moment for electric dipoles, where:

$$
|\mathbf{p}|=Q d
$$

Clearly, the analogous product to $Q d$ for a magnetic dipole is SI. We can, in fact, define a magnetic dipole moment m :

$$
m \doteq \text { Magnetic Dipole Moment } \quad\left[\text { Amps } \cdot \mathrm{m}^{2}\right]
$$

Analogous to the electric dipole, the magnetic dipole moment has magnitude:

$$
|\mathbf{m}|=S I
$$

Q: We now know the magnitude of the magnetic dipole moment, but what is its direction??

A: The magnetic dipole m points in the direction orthogonal to the circular surface S, e.g.:

m

Note the direction is defined using the right-hand rule with respect to the direction of current I.

Instead of plus (+) and minus (-), the poles of a magnetic dipole are defined as north (N) and south (S):

Thus, for the example provide on this handout, the magnetic dipole moment is:

$$
\mathrm{m}=S I \hat{a}_{z}
$$

We note that $S I \sin \theta \hat{a}_{\phi}=S I \hat{a}_{z} \times \hat{a}_{r}=m \times \hat{a}_{r}$, therefore we can write:

$$
\begin{aligned}
\mathbf{A}(\bar{r}) & =\frac{\mu_{0} S I}{4 \pi r^{2}} \sin \theta \hat{a}_{\phi} \\
& =\frac{\mu_{0} \boldsymbol{m} \times \hat{a}_{r}}{4 \pi r^{2}}
\end{aligned}
$$

The above equation is in fact valid for any magnetic dipole m located at the origin, regardless of its direction! In other words, we can also use the above expression if m is pointed in some direction other than \hat{a}_{z},e.g.:

Q: What if the magnetic dipole is not located at the origin?
A: Just like we have many times before, we make the substitutions:

$$
r \rightarrow|\bar{r}-\vec{r}| \quad \hat{a}_{r}=\hat{a}_{R}=\frac{\bar{r}-\bar{r}}{|\bar{r}-\bar{r}|}
$$

Therefore, we find the magnetic flux density $\mathbf{A}(\bar{r})$ produced by an arbitrary magnetic dipole m, located at an arbitrary position \vec{r}, is:

$$
\mathbf{A}(\bar{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times(\bar{r}-\vec{r})}{|\bar{r}-\bar{r}|^{3}}
$$

To determine the magnetic flux density $\mathrm{B}(\bar{r})$, we simply take the curl of the above expression.

Note this is analogous to the expression of the electric scalar potential generated by an electric dipole with moment p :

$$
V(\overline{\mathrm{r}})=\frac{1}{4 \pi \varepsilon} \frac{\mathbf{p} \cdot(\bar{r}-\bar{r})}{|\bar{r}-\bar{r}|^{3}}
$$

and then taking the gradient of this function to determine the electric field $E(\bar{r})$.

