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The Magnetic Dipole 
 
Consider a very small, circular current loop of radius a, 
carrying current I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the contour C is a circle around the z –axis, with radius a, 
we use the differential line vector: 
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Q:  What magnetic 
flux density is 
produced by this loop, 
in regions far from the 
current (i.e., r>>a)? 
 
A:  First, find the 
magnetic vector 
potential ( )rA : 
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The location of the current is specified by position vector r ′. 
Since for every point on the current loop we find 0z ′ =  and 

aρ′ = , we find: 
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And finally, 
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With a little algebra and trigonometry, we find also that: 
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Since the radius of the circle is very small (i.e., a << r), we can 
use a Taylor Series to approximate the above expression (see 
page 231 of text): 
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The magnetic vector potential can now be evaluated ! 
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Note that 2aπ equals the surface area S of the circular loop. 
Therefore, we can write that magnetic vector potential 
produced by a very small current loop is: 
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We can now determine magnetic flux density ( )rB  by taking 
the curl: 
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Q:  Hey! Something about this result looks very familiar ! 
 
A:  Compare this result to that of an electric dipole: 
 

( ) ( )3 2
4 r
Qd ˆ ˆr cos a sin a

r θθ θ
πε

= +E  

 
Both results have exactly the same form!: 
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where c is a constant.
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Because of this similarity, we can refer to a small current loop 
of are S and current I as a Magnetic Dipole. 
 
Note that the only difference between the mathematical 
description of an electric field produced by an electric dipole 
and the magnetic flux density produced by a magnetic dipole is 
a constant c: 
 

Qdelectric dipole c→ =
ε

 

 
0magnetic dipole Sc I→ = µ  

 
Recall that we defined a dipole moment for electric dipoles, 
where: 

Qd=p  
 

Clearly, the analogous product to Qd for a magnetic dipole is 
SI. We can, in fact, define a magnetic dipole moment m: 
 
 

2Magnetic Dipole Moment     Amps m⎡ ⎤⋅⎣ ⎦m  
 
 

Analogous to the electric dipole, the magnetic dipole moment 
has magnitude: 
 

SI=m  
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Q:  We now know the magnitude of the magnetic dipole moment, 
but what is its direction ?? 
 
A:  The magnetic dipole m points in the direction orthogonal to 
the circular surface S, e.g.: 
 
 
 
 
 
 
 
 
 
 
 

Note the direction is defined using the right-hand rule with 
respect to the direction of current I. 
 
Instead of plus (+) and minus (-), the poles of a magnetic dipole 
are defined as north (N) and south(S): 
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Thus, for the example provide on this handout, the magnetic 
dipole moment is: 

S zˆI a=m  
 

We note that S sin S x xz r rˆ ˆ ˆ ˆI a I a a aφθ = = m , therefore we can 
write: 

( ) 0
2

0
2

S sin
4

x
4

r

I ˆr a
r

â
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The above equation is in fact valid for any magnetic dipole m 
located at the origin, regardless of its direction!  In other 
words, we can also use the above expression if m is pointed in 
some direction other than zâ ,e.g.: 
 
 
 
 
 
 
 
Q:  What if the magnetic dipole is not located at the origin? 
 
A:   Just like we have many times before, we make the 
substitutions: 
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Therefore, we find the magnetic flux density  ( )rA  produced 
by an arbitrary magnetic dipole m, located at an arbitrary 
position r ′, is: 
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To determine the magnetic flux density ( )rB , we simply take 
the curl of the above expression.  
 
 
Note this is analogous to the expression of the electric scalar 
potential generated by an electric dipole with moment p: 
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and then taking the gradient of this function to determine the 
electric field ( )rE . 


